Electric field from a sphere with a cavity

A sphere of radius a is filled with positive charge with uniform density \rho. Then a smaller sphere of radius a/2 is carved out, as shown in the figure below, and left empty. What are the direction and magnitude of the electric field at A? At B?

Rendered by QuickLaTeX.com

Related problems:
Electric field in a hollow region
Charge at one corner of a cube
Flux from a charged shell

Solution

This problem can be solved by using the principle of superposition. For instance, consider a point charge +q at some point P in space. It creates an electric field everywhere. However, if you place a …

Continue Reading

Conducting wire in a magnetic field

JEE Advanced 2019 Paper 1, Question 6

A conducting wire of parabolic shape, initially y = x^2, is moving with velocity \vec v = v_0 \hat i in a non-uniform magnetic field \vec B = B_0 \left( 1 + \left( \frac{y}{L} \right)^\beta \right) \hat k, as shown in the figure below. If v_0, B_0, L and \beta are positive constants and \Delta \phi is the potential difference developed between the ends of the wire, then the correct statement(s) is/are:

Rendered by QuickLaTeX.com

  1. |\Delta \phi| = \frac{1}{2} B_0 v_0 L for \beta = 0.
  2. |\Delta \phi| = \frac{4}{3} B_0 v_0 L for \beta = 2.
  3. |\Delta \phi| remains the same if the parabolic wire is replaced by a straight wire, y=x initially, of length \sqrt{2} L.
  4. |\Delta \phi| is proportional to the length of the wire projected on the y axis.

Related Problems:
Electromagnetic induction in a twisted loop
Terminal velocity in a magnetic field

Continue Reading