Refracting surface with a coating

JEE Advanced 2014 Paper 1, Question 9

A transparent thin film of uniform thickness and refractive index n_{1}=1.4 is coated on the convex spherical surface of radius R at one end of a long solid glass cylinder of refractive index n_{2}=1.5, as shown in the figure. Rays of light parallel to the axis of the cylinder traversing through the film from air to glass get focused at distance f_{1} from the film, while rays of light traversing from glass to air get focused at distance f_{2} from the film. Then

Rendered by QuickLaTeX.com

  1. \left|f_{1}\right|=3 R
  2. \left|f_{1}\right|=2.8 R
  3. \left|f_{2}\right|=2 R
  4. \left|f_{2}\right|=1.4 R

Related Problem: Lensing by oil on water

Solution

We can solve this problem using …

Continue Reading

Lensing by oil on water

JEE Advanced 2011 Paper 2, Question 36

Water (with refractive index =\frac{4}{3} ) in a tank is 18 \mathrm{~cm} deep. Oil of refractive index \frac{7}{4} lies on water making a convex surface of radius of curvature R=6 {\rm ~cm} as shown. Consider oil to act as a thin lens. An object ‘S’ is placed 24 \mathrm{~cm} above water surface. The location of its image is at ‘x’ cm above the bottom of the tank. What is ‘x’?

Rendered by QuickLaTeX.com

Solution

To find the location of the final image we consider the oil and the water in the tank as a combination of two elements: a lens and a …

Continue Reading

Electric flux through a hemisphere

JEE Advanced 2017 Paper 2, Question 10

A point charge +Q is placed just outside an imaginary hemispherical surface of radius {\rm R} as shown in the figure. Which of the following statements is/are correct?

Rendered by QuickLaTeX.com

  1. The electric flux passing through the curved surface of the hemisphere is -\frac{Q}{2 \varepsilon_{0}}\left(1-\frac{1}{\sqrt{2}}\right)
  2. Total flux through the curved and the flat surfaces is \frac{Q}{\varepsilon_{0}}
  3. The component of the electric field normal to the flat surface is constant over the surface
  4. The circumference of the flat surface is an equipotential

Related Problems:
Flux from a charged shell
Conducting wire in a magnetic field

Solution

In problems like these a beginner may …

Continue Reading

Resistor network with mirror symmetry

JEE Advanced 2012 Paper 1, Question 12

For the resistance network shown in the figure, choose the correct option(s).

Rendered by QuickLaTeX.com

  1. The current through PQ is zero.
  2. I_1 = 3 A.
  3. The potential at S is less than that at Q.
  4. I_2 = 2 A.

Solution

We can speed up the solution by noticing the mirror symmetry of the circuit. Let the current I_1 split into two parts I_a and I_b at the node X (see figure). Similarly, let the currents going into node Y be I_a' and I_b'. If we were to reverse the polarity of the 12 \, {\rm V} battery connected to the circuit, all currents would simply reverse direction, but their magnitudes would remain the …

Continue Reading

Terminal velocity in a magnetic field

A copper connector of mass m slides down two smooth copper bars, set at an angle \alpha to the horizontal, due to gravity (see figure). At the top the bars are interconnected through a resistance R. The separation between the bars is \ell. The system is located in a uniform magnetic field of induction B, perpendicular to the plane in which the connector slides. The resistance of the bars, the connector and the sliding contacts, as well as the self-inductance of the loop are assumed to be negilible. If the connector is released from rest at t=0,

  1. Find the velocty v(t) of
Continue Reading