Ampere’s law and symmetry

Problem 3.231 from Irodov.

A current I flows along a lengthy straight wire, as shown in the figure below. From the point O the current spreads radially all over an infinite conducting plane perpendicular to the wire. Find the magnetic field above and below the plane.

Rendered by QuickLaTeX.com

A wire carrying current to an infinite conducting plane. We indicate the radial current on the plane with a few lines, but there is current flowing along every point of the plane.

Solution:

We will use this problem to demonstrate the use of Ampere’s law, starting with some simple scenarios. Our goal is to understand …

Continue Reading

Biot-Savart law on a polygon

A current I flows along a thin wire, shaped as a regular polygon with N sides, which can be inscribed intro a circle of radius R. Find the magnetic field at the center of the polygon. What happens if N is made very large?

Solution:

The polygon described in the problem is illustrated in the figure below, for N=8. The magnetic field created by this structure is the superposition of fields from N straight current carrying wires of length 2 R \sin (\pi/N). Therefore, we will need to find the magnetic field due to a wire of finite length first.

Rendered by QuickLaTeX.com

The Biot-Savart law gives the magnetic field …

Continue Reading

Terminal velocity in a magnetic field

A copper connector of mass m slides down two smooth copper bars, set at an angle \alpha to the horizontal, due to gravity (see figure). At the top the bars are interconnected through a resistance R. The separation between the bars is \ell. The system is located in a uniform magnetic field of induction B, perpendicular to the plane in which the connector slides. The resistance of the bars, the connector and the sliding contacts, as well as the self-inductance of the loop are assumed to be negilible. If the connector is released from rest at t=0,

  1. Find the velocty v(t) of
Continue Reading

Electromagnetic induction in a twisted loop

JEE Advanced 2017 Paper 1, Question 5

A circular insulated copper wire loop is twisted to form two loops of area A and 2 A as shown in the figure. At the point of crossing the wires remain electrically insulated from each other. The entire loop lies in the plane (of the paper). A uniform magnetic field {\bf B} points into the plane of the paper. At t=0, the loop starts rotating about the common diameter as axis with a constant angular velocity \omega in the magnetic field. Which of the following options is/are correct?

Rendered by QuickLaTeX.com

  1. The emf induced in the loop is proportional to the sum
Continue Reading

Conducting wire in a magnetic field

JEE Advanced 2019 Paper 1, Question 6

A conducting wire of parabolic shape, initially y = x^2, is moving with velocity \vec v = v_0 \hat i in a non-uniform magnetic field \vec B = B_0 \left( 1 + \left( \frac{y}{L} \right)^\beta \right) \hat k, as shown in the figure below. If v_0, B_0, L and \beta are positive constants and \Delta \phi is the potential difference developed between the ends of the wire, then the correct statement(s) is/are:

Rendered by QuickLaTeX.com

  1. |\Delta \phi| = \frac{1}{2} B_0 v_0 L for \beta = 0.
  2. |\Delta \phi| = \frac{4}{3} B_0 v_0 L for \beta = 2.
  3. |\Delta \phi| remains the same if the parabolic wire is replaced by a straight wire, y=x initially, of length \sqrt{2} L.
  4. |\Delta \phi| is proportional to the length of the wire projected on the y axis.

Related Problems:
Electromagnetic induction in a twisted loop
Terminal velocity in a magnetic field

Continue Reading