Electric field from a sphere with a cavity

A sphere of radius a is filled with positive charge with uniform density \rho. Then a smaller sphere of radius a/2 is carved out, as shown in the figure below, and left empty. What are the direction and magnitude of the electric field at A? At B?

Rendered by QuickLaTeX.com

Related problems:
Electric field in a hollow region
Charge at one corner of a cube
Flux from a charged shell

Solution

This problem can be solved by using the principle of superposition. For instance, consider a point charge +q at some point P in space. It creates an electric field everywhere. However, if you place a …

Continue Reading

Flux from a charged shell

JEE Advanced 2019 Paper 1, Question 8

A charged shell of radius R carries a total charge Q. Given \Phi as the flux of electric field through a closed cylindrical surface of height h, radius r
and with its center same as that of the shell. Here, the center of the cylinder is a point on the axis of the cylinder which is equidistant from its top and bottom surfaces. Which of the following option(s) is/are correct?

[\epsilon_0 is the permittivity of free space]

  1. If h > 2R and r > R then \Phi = Q/\epsilon_0
  2. If h < 8R/5 and r = 3R/5 then \Phi = 0
  3. If h > 2R and r = 3R/5 then \Phi = Q/5\epsilon_0
  4. If h > 2R and r = 4R/5 then \Phi = Q/5\epsilon_0

Related problems:
Electric field from a sphere

Continue Reading

Insulating spherical shell with a hole

JEE Advanced 2019 Paper 1, Question 2.

A thin spherical insulating shell of radius R carries a uniformly distributed charge such that the potential at its surface is V_0. A hole with a small area \alpha 4 \pi R^2 \ (\alpha \ll 1) is made on the shell without affecting the rest of the shell. Which one of the following statements is correct?

  1. The potential at the center of the shell is reduced by 2 \alpha V_0
  2. The magnitude of the eletric field at the center of the shell is reduced by \frac{\alpha V_0}{2 R}
  3. The ratio of the potential at the center of the shell to that of the point at R/2 from center towards
Continue Reading