Particle in a tube

JEE Advanced 2019 Paper 2, Question 3

A small particle of mass m moving inside a heavy, hollow and straight tube along the tube axis undergoes elastic collision at two ends. The tube has no friction and it is closed at one end by a flat surface while the other end is fitted with a heavy movable flat piston as shown in figure. When the distance of the piston from the closed end is L=L_{0} the particle speed is v=v_{0} . The piston is moved inward at a very low speed V such that V \ll \frac{{\rm d} L}{L} v_{0}, where {\rm d} L is the infinitesimal displacement of the piston. Which of …

Continue Reading

Rod heated by wire

JEE Advanced 2019 Paper 1, Question 3

A current carrying wire heats a metal rod. The wire provides a constant power P to the rod. The metal rod is enclosed in an insulated container. It is observed that the temperature T in the metal rod changes with time t as

(1)   \begin{equation*}  T(t) = T_0 (1 + \beta t^{\frac{1}{4}}) \end{equation*}

where \beta is a constant with appropriate dimension while T_0 is a constant with dimension of temperature. The heat capacity of the metal is,

  1. \frac{4 P [T(t) - T_0]^3}{\beta^4 T_0^4}
  2. \frac{4 P [T(t) - T_0]^4}{\beta^4 T_0^5}
  3. \frac{4 P [T(t) - T_0]^2}{\beta^4 T_0^3}
  4. \frac{4 P [T(t) - T_0]}{\beta^4 T_0^2}

Solution

The heat capacity of an object is defined by the relation

(2)   \begin{equation*}  \Delta Q = C \Delta T \end{equation*}

where \Delta Q is the heat that the object absorbs and \Delta T is the resulting temperature change of …

Continue Reading

Spherical gas cloud

JEE Advanced 2019 Paper 1, Question 1

Consider a spherical gas cloud of mass density \rho(r) in free space where r is the radial distance from its center. The gaseous cloud is made of particles of equal mass m moving in circular orbits about the common center with the same kinetic energy K. The force acting on the particles is their mutual gravitational force. If \rho(r) is constant in time, the particle number density n(r) = \rho(r)/m is [G is the universal gravitational constant]

  1. \frac{K}{2 \pi r^2 m^2 G}
  2. \frac{K}{\pi r^2 m^2 G}
  3. \frac{3 K}{\pi r^2 m^2 G}
  4. \frac{K}{6 \pi r^2 m^2 G}

Solution

Consider a small parcel of gas in the cloud with mass \Delta m at a distance r from the center of the cloud (see figure). …

Continue Reading