Power dissipated in resistance networks

JEE Advanced 2008 Paper 1, Question 25

The figure below shows three resistor configurations R1, R2 and R3 connected to 3 \mathrm{~V} battery. If the power dissipated by the configuration R1, R2 and R3 is P1, P2 and P3 respectively, then

Rendered by QuickLaTeX.com

  1. P1 > P2 > P3
  2. P1 > P3 > P2
  3. P2 > P1 > P3
  4. P3 > P2 > P1

Solution

The power dissipated by a resistance network is

(1)   \begin{equation*}   P = \frac{V^2}{R} .  \end{equation*}

The potential applied to all three networks arre the same, so we just need to find the resistances. Of circuits R2 and R3, the latter has a greater resistance since

(2)   \begin{equation*}   % R_3 = 1 \, \Omega + \frac{2 \, \Omega \cdot 2 \, \Omega}{2 \, \Omega + 2 \, \Omega} = 2 \, \Omega ,   R_3 = 1 \, \Omega + \left( \frac{1}{2 \Omega} + \frac{1}{2 \Omega} \right)^{-1} = 2 \, \Omega , \end{equation*}

whereas

(3)   \begin{equation*}   % R_2 = \frac{1 \, \Omega \cdot 1 \, \Omega}{1 \, \Omega + 1 \, \Omega} = 0.5  \, \Omega .   R_2 = \left( \frac{1}{1 \Omega} + \frac{1}{2 \Omega} + \frac{1}{2 \Omega} \right)^{-1} = 0.5 \, \Omega. \end{equation*}

The first circuit can be redrawn in the following way to make the comparison easier.

Rendered by QuickLaTeX.com

From the second figure we see that the network R1 is a perfectly balanced Wheatstone bridge, which means no current flows through the resistance connected between points B and D. We can also argue this by symmetry of the circuit, similar to what we did for this problem. Therefore, the network has an effective resistance

(4)   \begin{equation*}   R_1 = \left( \frac{1}{2 \Omega} + \frac{1}{2 \Omega} \right)^{-1} = 1 \, \Omega . \end{equation*}

Therefore R_2 < R_1 < R_3 \implies P_2 > P_1 > P_3, which means option (C) is correct.

Leave a Reply